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Abstract—Estimation of instantaneous fuel consumption of
fleet vehicles to identify the causes of high fuel consumption and
determine the optimum vehicle type for different applications
and driving cycles is essential for the design of an intelligent
fleet management system. Developing a practical and reliable
method to estimate instantaneous fuel consumption of fleet
vehicles is the focus of this study. The proposed method uses
real-time on-board diagnostics (OBD) data from a vehicle and
applies machine learning models that are trained based on actual
fuel consumption measurements. Two machine learning models,
including random forest and artificial neural network (ANN),
are developed for fuel consumption estimation based on OBD
and fuel consumption data. The data are collected during real-
world urban and highway driving in a 100-km route for a
Ford Escape PHEV and a Ford F-350. The OBD data used
for machine learning models include engine load, engine speed,
intake manifold absolute pressure, air-fuel equivalence ratio, and
throttle position. The validation results show that the random
forest method is more accurate than the ANN method, with a
estimation accuracy of 99% for the two tested vehicles.

Index Terms—Artificial Neural Networks, Random Forest,
Instantaneous Fuel Consumption, Machine Learning, Fleet Man-
agement

I. INTRODUCTION

Reducing fuel consumption of fleet vehicles is one of the
primary goals for intelligent fleet management since fuel is one
of the major operational costs and directly affects the emission
of greenhouse gases and air pollutants from fleet vehicles.

Methods for estimating “average” fuel consumption based
on the cumulative fuel consumed and the distance traveled
are currently available [1]. However, cumulative or average
fuel consumption is typically insufficient for fleet management
systems to reduce fuel consumption. The information for
identifying driving conditions with high fuel consumption,
finding powertrain efficiency in different operating conditions,
selecting optimum routes, or assessing the effect of fleet driver
behavior on fuel consumption is lacking in the average data.
Direct and accurate measurement of vehicle fuel consumption
requires the installation of a flow sensor in the fuel flow

line of vehicles with a spark ignition (gasoline) engine or
installing two fuel flow meters in supply and return fuel
lines of vehicles of a compression ignition (diesel) engine.
This requires a separate data acquisition system and regular
maintenance of the system which is costly. An alternative
method is to develop data-driven mathematical models using
measured data to estimate fuel consumption. In [2], regression
models were developed for estimating fuel consumption and
emission where the data was collected from dynamometer
testing of a vehicle and the model inputs were vehicle speed
and acceleration.

Fuel consumption is correlated to engine operating parame-
ters. Through on-board diagnostics (OBD), many performance
parameters of the vehicle engine in the electronic control unit
(ECU) are available. These parameters, which are reported to
control vehicle emissions, show real-time engine operation [3].
OBD-II is mandatory for all light-duty vahicles and trucks in
North America since 1996 [4]. Some parameters provided by
OBD-II affect fuel consumption, so these parameters can be
used to estimate a vehicle fuel consumption. In [5], vehicle
speed and intake mass air flow (MAF) were collected from
OBD, and the fuel consumed was estimated from the MAF,
assuming the air-to-fuel ratio remained constant. Estimated
fuel consumption from OBD data using MAF is compared
with fuel consumption determined through carbon balance
measurements from dynamometer chassis testing in [6]. They
obtained sufficient accuracy for estimating fuel consumption
during stoichiometric operation. This method seems acceptable
for applications where the combustion is at stoichiometric
conditions, but is inaccurate for non-stoichiometric operations.

Machine learning estimation and modeling methods can
be useful to improve the accuracy of estimation models. In
a study on an articulated truck, three models of support
vector machine (SVM), random forest (RF), and artificial
neural network (ANN) were used to model fuel consump-
tion in terms of parameters such as road gradient, torque,
acceleration, and weight. In general, the random forest model



showed the best performance to estimate fuel consumption
[7]. A support vector machine (SVM) model to predict fuel
consumption by vehicle throttle position and engine speed
obtained from OBD is described in [8]. MAF is used to
calculate fuel consumption and compare it with the estimated
fuel flow. A universal OBD module is presented in [9] to
predict fuel consumption using OBD parameters including air
flow rate, coolant temperature, engine load, ignition timing,
engine speed, vehicle speed, throttle position, and control
module voltage. The deep learning models are trained for three
different vehicles driving in different routes. The test results
from the trained vehicles with Elman NN method show an
accuracy of 96%. A Recurrent Neural Network (RNN) model
was developed in [10] to monitor fuel consumption using
global positioning system (GPS) data, speed, altitude, and
acceleration. The results confirmed the superior performance
of the proposed fuel consumption estimation model.

The University of Alberta’s fleet consists of 173 vehicles
that are monitored daily using cellular OBD readers and also
equipped with GPS for intelligent fleet management system
of the university fleet vehicles. This study aims to develop
a reliable and accurate method for monitoring instantaneous
fuel consumption of the university fleet vehicles using OBD
data. The analysis of instantaneous fuel consumption along
with GPS and other collected vehicle operational data will
enable intelligent fleet management by i) identifying driving
behaviors with high fuel consumption, ii) selecting the opti-
mum routes based on fuel consumption, iii) finding powertrain
efficiency in different operating conditions, iv) identifying
optimum vehicle types for different vehicle applications and
driving cycles at the university. Random Forest and artificial
neural network methods are used in this study to model
instantaneous fuel consumption using real-time OBD data.

The new contributions of this study include:

• Findings are based on direct measurement of instanta-
neous fuel consumption to provide accurate and sufficient
data for training of the machine learning models.

• Measuring accurate fuel consumption along with real-
time OBD data over a wide range of operating conditions
including cold start and non-stoichiometric conditions
allows for more accurate machine learning models.

• Applying an ultrasonic fuel flow meter allows to mea-
sure ultra low-volume fuel flow operation with a high
sampling frequency of 5 Hz.

• Fuel consumption data from two MY2021 modern vehi-
cles are presented.

This paper is organized as follows. The next section de-
scribes the experimental setup, data collection tools, tested
vehicles, driving route, and machine learning methods. In sec-
tion III, the modeling results for both vehicles and both models
are presented, compared and discussed. Finally, summary and
conclusions are given in section IV.

II. METHODOLOGY

A. Tested Vehicles
Two MY2021 vehicles were selected for this study; a Ford

compact SUV and a Ford full-size pickup truck. The two
vehicles represent two major categories of fleet vehicles owned
by the University of Alberta. Among the 173 vehicles in the
university fleet, there are 74 trucks and 19 sedans or SUVs.
The specifications of the two selected vehicles are shown in
Table I. The powertrain systems of these two vehicles are
different as one is a plug-in hybrid electric vehicle (PHEV)
with a 2.5-litre gasoline engine and the other is a vehicle with
a conventional 6.2-litre gasoline engine.

TABLE I: Tested Vehicles

Vehicle Make/Model Ford Escape PHEV Ford F-350
Model Year 2021 2021

Vehicle Body Style Compact SUV Pickup Truck
Fuel Type Gasoline / Battery Gasoline

Engine Size 2.5 L 6.2 L

Engine Power 221 hp 385 hp
(@ 6,250 rpm) (@ 5,750 rpm)

Battery Capacity 14.4 kWh -

B. Test Route
A driving route, shown in Fig. 1 was selected to cover a

broad range of driving conditions. The route includes residen-
tial areas (maximum speed of 40 km/h), urban areas (60 - 100
km/h), and highway areas (110 km/h). Road grades and traffic
lights are parts of the route. The test starts at the University of
Alberta, South Campus to Leduc, Alberta and returns to the
South Campus, as shown in Fig. 1. The total distance covered
is 100 km with an approximate duration of 1 hour and 33
minutes.

Fig. 1: 100-km driving route, image taken from Google Maps.



C. Fuel Measurement

To measure instantaneous fuel consumption, An ultrasonic
fuel flow meter by Sentronics (FlowSonic LF Low-Flow
Sensor) was installed on each vehicle as shown in Fig. 2.
Specifications of the Sentronics fuel flow meter are listed in
Table II. The fuel flow meter was selected due to its capability
to measure low-volume fuel flow (e.g., idling condition of a
small fleet vehicle), the ability to measure different fuels (e.g.,
gasoline, diesel), robustness against vibrations and pulsating
flows, high measurement accuracy, small and lightweight to
install easily on any engine. The flow data were measured at
5 Hz and transferred by via CAN communication to the data
acquisition system.

Fuel flow meter
Fuel feed line

Fuel return line

(a) Ford Escape PHEV

Fuel flow meter

Fuel feed line

Fuel return line

(b) Ford F-350

Fig. 2: Fuel flow meter installation in the fuel path of the two
vehicles.

D. CAN Data Collection

Fig. 3 shows the schematic of the data collection process,
using CANedge2 data logger. Through the CAN bus, OBD
data was collected and synchronized with the Sentronics sen-
sor fuel measurements data. In this study, the CSS Electronics
CANedge2 CAN bus data logger was used to collect CAN
data, including OBD-II and fuel flow measurement data. The
OBD data was collected by the CAN bus data logger at

TABLE II: Specifications of the fuel flow meter in this study

Parameter Value
Repeatability +/- 0.15% of reading
Uncertainty +/- 0.5% of reading

Operating flow range 8 - 4000 ml/min
Max. measurement rate 2.2 kHz

Pressure drop <20 kPa
at maximum flow (4000 ml/min gasoline @ 20°C)

Fluid temperature range -20°C to +120°C
Ambient temperature range -40°C to +120°C

Fluid compatibility Gasoline, Diesel, Bio-diesel
Ethanol, Methanol

CAN 1
CAN 2

OBD-II portCAN data loggerLaptop

Fuel tank Fuel flow meter Engine

Fuel path
Data path

Fig. 3: Schematics of the data collection process.

sampling frequency of 2 Hz and synchronized with fuel flow
CAN data. Table III shows the OBD parameters that were used
to calculate fuel consumption.

TABLE III: Parameters collected by CANedge2 to estimate
fuel consumption

Parameter Name Unit
Engine Speed RPM
Engine Load Percent

Intake Manifold Absolute Pressure kPa
Throttle Position Percent

Air-Fuel Equivalence Ratio (λ) -

Air-fuel equivalence ratio (λ) is one of the parameters that
affects calculating the fuel consumption. Instead of using
commanded air-fuel equivalence ratio from OBD data, the
short and long-term fuel trims from OBD data were used to
calculate air-fuel equivalence ratio accurately. The λ calcula-
tion equation is:

λ =
1

(1 + Short−term Fuel Trim
100 )× (1 + Long−term Fuel Trim

100 )
(1)



E. Machine Learning Models

Initially, four machine learning models including random
forest, ANN, SVM, and k-nearest neighbors (KNN) were
tested for estimating fuel consumption. The initial analysis
showed that random forest and ANN offer the highest accu-
racy. This paper focuses on presenting the results for random
forest and artificial neural network (ANN) to estimate fuel
consumption. Random forest training is fast and resistant to
over-fitting when there are many features. It also does not
require normalized data and works well with features with
different ranges of values [11]. ANN is a robust method to
measurement noises and works well for non-linear data sets
[12]. Here, an ANN method with one hidden layer is used
with the design parameters listed in Table IV. The optimal
number of hidden layer neurons for each model is determined
during training and validation. For the random Forest method,
the design parameters are listed in Table V and the number
of decision trees for each model is optimized during training
and validation.

TABLE IV: Design parameters of ANN model

Parameter Name Value
Nunmber of hidden layers 1

Activation function for the hidden layer Relu
Solver for weight optimization Adam

Learning rate 0.001
Numerical stability criteria 10-8

Maximum number of iterations 200

TABLE V: Design parameters of random forest model

Parameter Name Value
Split criterion function Squared error

Min. number of samples to split 2
Min. number of samples for a leaf node 1

Unlike the random forest model, the ANN model is sensitive
to differences in the range of feature values, so it is necessary
to normalize the data as part of the data preparation process.
The normalized data of each feature is formed as:

xs =
x−min(x)

max(x)−min(x)
(2)

Where x is the actual and xs is the normalized data, between
0 and 1.

To develop the models, the data collected with CANedge2
was divided into two parts. The first part, consisting of 70%
of the total data, was used in a 5-fold cross-validation method.
To do this, 70% data was divided into five parts and four parts
were used for the first repetition and the fifth part was used
for validation of the model. The remaining 30% of the data
was used to test the two trained machine learning models.

III. RESULTS AND DISCUSSION

To get an accurate fuel consumption model, it is critical
that the training data set covers all the possible operating
points. Engine load and engine speed are the most important

factors describing the engine operating points. Fig. 4 shows
the collected data over the drive cycle in Fig. 1 for both
vehicles cover a broad engine load (0 - 100%) and engine
speed (idle - 5000 rpm) operating conditions. The number of
points and the engine operating range in Fig. 4a is less than 4b,
because Ford Escape is a plug-in hybrid electric vehicle, and
in some operating conditions, instead of the gasoline engine,
the electric battery powers the vehicle.

(a) Ford Escape PHEV

(b) Ford F-350

Fig. 4: Engine load and speed for the collected vehicle data.

In Fig. 5, time series of vehicle speed and instantaneous
fuel consumption in the trip are shown for both vehicles. Speed
profiles show that driving cycles of both vehicles were close to
each other with differences due to the road traffic at the time of
vehicle testings. When vehicles accelerate, instantaneous fuel
consumption increases significantly and peaks, indicating that
driving behavior and operating conditions are very effective in
fuel consumption.

According to the validation results of the ANN model (Table
VI), the validation results are acceptable for both vehicles
(slightly better for Ford Escape). The hidden layer size is
optimized for each model by minimization of the root mean
square error (RMSE) of the estimated fuel consumption.



(a) Ford Escape PHEV

(b) Ford F-350

Fig. 5: Time series of vehicle speed and recorded fuel con-
sumption.

TABLE VI: Specifications of ANN fuel consumption model
cross validation

Parameter Ford F-350 Ford Escape PHEV
Hidden Layer Size 160 200

RMSE (g/min) 18.88 8.65
R2 0.96 0.98

The random forest validation results (Table VII) show this
model has better validation results on the fuel consumption of
both vehicles compared to ANN. The higher RMSE of Ford
F-350 models does not necessarily mean that those models are
less accurate, but because of the larger fuel consumption in
Ford F-350, which has a larger gasoline engine.

TABLE VII: Specifications of random forest fuel consumption
model cross validation

Parameter Ford F-350 Ford Escape PHEV
No. of Decision Trees 100 90

RMSE (g/min) 4.62 2.94
R2 1.00 1.00

The results of the performance of trained models on the test
data listed in Table VIII show the random forest model pro-
vides better estimation of fuel consumption on both vehicles.
Both RMSE and the coefficient of determination (R2) show
that using the random forest model leads to a more accurate
estimate of fuel consumption. Fig. 6 shows that the points of
the random forest model plots (Fig. 6c and Fig. 6d) are closer
to the diagonal line, indicating that the estimated results are
more consistent with the actual values.

Looking at part of the drive cycle in Fig. 7 shows that
the random forest model deviates less from the actual values.
Further, Fig. 7 shows that machine learning estimation models
are helpful tools to estimate instantaneous fuel consumption
based on OBD parameters. Overall, the performance of the

(a) ANN model - Ford Escape

(b) ANN model - Ford F-350

(c) Random forest model - Ford Escape

(d) Random forest model - Ford F-350

Fig. 6: Performance of the ANN and random forest models for
estimating instantaneous fuel consumption for the test data.



TABLE VIII: Results of the models on the test set

Model Vehicle RMSE (g/min) R2

ANN Ford F-350 20.40 0.97
ANN Ford Escape Hybrid 9.07 0.98
RF Ford F-350 11.72 0.99
RF Ford Escape Hybrid 6.096 0.99

(a) Ford Escape

(b) Ford F-350

Fig. 7: Comparing the estimation models.

machine learning models on Ford Escape PHEV is slightly
better than Ford F-350. This could be due to the higher fuel
consumption of Ford F-350, which causes bigger noise in the
fuel flow data.

IV. SUMMARY AND CONCLUSIONS

A method to estimate and monitor real-time instantaneous
fuel consumption of fleet vehicles using easily available
OBD data is described. The models were trained with OBD
and measured fuel consumption data. Once the models are
trained, OBD data is used and a real-time instantaneous fuel
consumption is available. Two different vehicles including a
Ford Escape PHEV and a Ford F-350 were equipped with a
fuel flow measurement sensor. A CAN data logger was used
to collect fuel and OBD data and the vehicles were driven
through a selected route including a wide range of driving
conditions. To develop fuel consumption estimation models,
5 features of engine load, engine speed, air-fuel equivalence
ratio, intake manifold absolute pressure, and throttle posi-
tion are selected as inputs for machine learning algorithms.

Random forest and artificial neural network (ANN) are used
as the machine learning methods and 5-fold cross validation
approach is implemented on the training data. These models
can be used to estimate instantaneous fuel consumption using
only OBD data.

ANN model can estimate Ford F-350 fuel consumption with
an accuracy of 97%. Its estimation accuracy for Ford Escape is
98%. Random forest model has a higher estimation accuracy
of 99% for both vehicles. Both methods have the acceptable
accuracy to be used for instantaneous fuel consumption esti-
mation of the fleet vehicles.
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